The self-regulating MPM Prefork derives its namesake from how it forks or copies itself into new identical processes preemptively to wait for incoming requests. A non-threaded process-based approach at multiprocessing, MPM Prefork runs Apache in a single master parent server process. This parent is responsible for managing any additional child servers that make up its serverpool. While using MPM Prefork, each child server handles only a single request. This focus provides complete isolation from other requests dealt with on the server. MPM Prefork is typically used for compatibility when non-threaded libraries/software, like mod_php (DSO), are required. From an optimization standpoint, MPM Prefork can be sorely lacking when compared to multi-threaded solutions, requiring vastly more resources to reach similar traffic levels as a threaded MPM. It is resource intensive due to its need to spawn full copies of Apache for every request.

Rule-of-Thumb:
Avoid using MPM Prefork whenever possible. It’s inability to scale well with increased traffic will quickly outpace the available hardware on most system configurations.
A hybrid pre-forking, multi threaded, multiprocessing web server. In the same fashion as MPM Prefork, MPM Worker uses the same approach with a single master parent process governing all children within its server pool. However, unlike MPM Prefork, these children are multi-threaded processes that can handle dozens of threads (requests) simultaneously. MPM Worker has set the foundation for multi threaded multiprocessing in Apache servers which became stable in Apache 2.2. The threaded configuration allows Apache to service hundreds of requests with ease while retaining only a dozen or so child processes in memory. The MPM Worker make for both a high capacity and low resource solution for web service.

Note
The KeepAliveTimeOut directive currently defines the amount of time Apache will wait for requests. When utilizing KeepAlive with MPM Worker use the smallest KeepAliveTimeout as possible (1 second preferably).
Based off the MPM Worker source code, MPM Event shares configuration directives with MPM Worker. It works nearly identical to MPM Worker except when it comes to handling KeepAlive requests. MPM Event uses a dedicated Listener thread in each child process. This Listening thread is responsible for directing incoming requests to an available worker thread. The Listening thread solves the issue encountered by MPM Worker which locks entire threads into waiting for the KeepAliveTimeout. The Listener approach of MPM Event ensures worker threads are not “stuck” waiting for KeepAliveTimeout to expire. This method keeps the maximum amount of worker threads handling as many requests as possible.

Tip:
MPM Event is stable in Apache 2.4, older versions can use MPM Worker as an alternative.
There is an assortment of additional MPMs available. These are typically part of Apache’s integration into Operating Systems other than Unix-based systems. These have specific MPMs which are requirements or utilizing Apache on their respective system types. These types of MPMs are beyond the purview of this article. You can find more information on specific MPM in the MPM Defaults section of the official Apache Documentation.

Tip:
We recommend staying away from experimental and unstable MPMs. The unreliable nature of these types of software renders them unsupportable.